WikiSort.ru - Самолёты и вертолёты

ПОИСК ПО САЙТУ | о проекте
Сталь Тинидур
Химический состав
Fe — 51 %
 
Ni — 30 %
 
Cr — 15 %
 
Ti — 2 %
 
Mn — 0.8 %
 
Si — 0.8 %
 
C — 0.13 %
 
Примеси: 0.27 %
Тип сплава
Аустенитная сталь
Механические свойства
жаропрочный сплав
Физические свойства
Плотность 7,92 г/см3
Предел прочности при 800 °C 245 МПа
Предел прочности при 600 °C 600 МПа
Предел ползучести (1% за 300 час.) при 600 °C 430 МПа
Аналоги
A286

Тинидур (нем. tinidur — по начальным буквам титан + никель + прочный) — жаропрочная сталь аустенитного класса, разработанная в 1936 году в Германии инженерами-металлургами Г. Банделем G. Bandel и К. Гебхардтом K. Gebhard — сотрудниками исследовательского отделения фирмы Krupp - Friedrich Krupp, г. Вульфрат [1].

История создания жаропрочной стали

В Германии работы по систематическому исследованию жаропрочности различных материалов были начаты в 1935—1936 годах Авиационным центром DVL Deutsche Versuchsanstalt für Luftfahrt. Родоначальником исследований в этой области, проводившихся применительно к турбонагнетателям авиационных моторов, является Франц Болленрат Franz Bollenrath — в 1940-е годы директор НИИ авиационных материалов (Inst. für Werkstoff-Forschung der DVL)[2].

Сталь Тинидур в первоначальном варианте имела обозначение Р-193. Упрочнение стали при высоких температурах (сопротивление ползучести) предполагалось обеспечить дисперсными выделениями термически стойких карбидов, для чего в состав стали вводили углерод (0,5 %) и титан (2 %). Позднее было установлено, что дисперсионное твердение происходит и при отсутствии углерода — за счёт дисперсных выделений интерметаллидного соединения Ni3Ti. После этого содержание углерода уменьшили до 0,1 %. Улучшенным вариантом этой стали стал Тинидур. Спустя 4-5 лет аналогичная ситуация повторилась в Англии при разработке жаропрочного никелевого сплава «нимоник», сопротивления ползучести которого также ожидали получить за счет дисперсных выделений карбидов титана[3][4]. В конечном итоге оказалось, что высокотемпературная прочность материала обязана дисперсным выделениям интерметаллида Ni3(Ti,Al).

Химические составы германских аустенитных жаропрочных сталей Тинидур[5]
Марка
стали
%C %Mn %Si %Ni %Cr %Mo %Ti %Al % др.
элементов
P-193 0,5 0,6 0,6 30 30 - 2 - Fe-основа
Тинидур 0,12-0,14 0,6-1,0 0,6-1,0 29,0-31,0 14,5-15,5 - 1,8-2,2 0,2 Fe-основа
А286 0,05 1,35 0,55 25 15 1,25 2,0 0,2 0,3V

Назначение легирующих элементов в аустенитных сталях Тинидур: Ni — упрочняет и стабилизирует аустенитную структуру, образует гамма-штрих фазу и препятствует образованию нежелательных фаз. Cr — обеспечивает стойкость к газовой коррозии и упрочняет твердый раствор. Ti и Al — основные элементы, обеспечивающие дисперсионное твердение сплава. Сталь подвергалась закалке с температуры 1125 °C в воду и старению при температуре 750 °C. При правильно подобранной термообработке происходит выделение из аустенитной матрицы дисперсных кристаллов интерметаллидной фазы Ni3(Ti,Al).

Применение в реактивном двигателестроении

В 1937 году немецкий конструктор фон Охайн, выбрал Тинидур для изготовления теплонапряженных узлов конструкции и приступил к разработке первого воздушно-реактивного двигателя HeS (нем.) самолёта He 178 [6].

К 1939 году конструкторы Ансельм Франц Anselm Franz, Отто Мадер Otto Mader и главный металлург Хайнрих Аденштедт Heinrich Adenstedt моторного отдела фирмы «Юнкерс», (Junkers Motorenbau) в Магдебурге, по результатам сравнительных испытаний имевшихся в Германии материалов, выбрали жаропрочную сталь Тинидур, как лучший материал лопаток и диска турбины двигателя Jumo-004 на рабочие температуры 600—700°C [7].

Уже ранние испытания показали, что даже идентичные лопатки показывают большой разброс по долговечности. К 1943 году усилиями отдела материалов Junkers Motorenbau в Дессау была решена проблема надёжности и стабильности характеристик эксплуатационной прочности кованых лопаток из стали Тинидур путём тщательного контроля процесса изготовления лопаток, в первую очередь, самого процесса ковки. Позднее, в связи с несвариваемостью листа из стали Тинидур, был разработан процесс глубокой вытяжки, в котором заготовкой полой лопатки служил тонкий плоский диск. По трудоёмкости изготовления полые лопатки оказались более экономичными по сравнению с монолитными[8].

Чтобы уйти от состава с 30 процентами никеля фирма Крупп разработала жаропрочную свариваемую сталь Хромадур. Технология получения полой лопатки гибкой плоского листа стали Хромадур и последующей сварки заготовки по задней кромке оказалась предпочтительной в сравнении с глубокой вытяжкой. В итоге полые лопатки Хромадур показали более высокую надёжность в сравнении с выполненными из стали Тинидур, даже несмотря на меньшее сопротивление ползучести первой[8].

К 1943 году в связи с увеличивающимся дефицитом легирующих элементов, в рамках подготовки к производству серийной модификации двигателя Jumo-004В, фирмой Крупп были разработаны несколько жаропрочных сталей экономного легирования, в их числе стали Хромадур и Ванидур. В стали Хромадур, предназначенной для рабочих и сопловых лопаток, никель был заменен марганцем, который, как и никель расширяет область гамма-твердого раствора. Вызванное такой заменой снижение окалиностойкости сплава отчасти компенсировано содержанием кремния. Во второй стали, предназначенной для изготовления дисков ротора турбины, исходная марка — Крупп V2A-ED, вольфрам (1 %W) заменен на ванадий (1 %V). Сталь Синидур — с карбидным и интерметаллидным упрочнением. Состав указанных сталей приведен в таблице.

Химические составы германских аустенитных жаропрочных сталей-заменителей Тинидур на рабочие температуры 600—700 °C
Марка
стали
%C %Mn %Si %Ni %Cr %Mo %W %Ti %Al % др.
элементов
Cromadur 0,09-0,12 17,5-18,5 0,55-0,7 - 11,0-14,0 0,7-0,8 - - - V 0,60-0,70
0,18-0,23 N2
Vanidur 0,1 0,2-0,4 0,3-0,6 10,0-11,0 17,0-18,0 - - 0,5-0,7 - 1 %V
Sinidur 0,25 - - 24 19 2,0 1,0 2,2-3,0 1,0 -

Послевоенное применение Тинидур в США

В конце 1940-х годов в США под руководством Гюнтера Молинга Gunter Mohling[9] — заместителя директора по исследованиям фирмы Allegheny Ludlum Steel Corp. был создан улучшенный вариант стали Тинидур, получивший обозначение А286. Сталь А286 отличается от исходной Тинидур добавкой молибдена и уточненным содержанием некоторых элементов. Назначение молибдена (1,3 %) — повышение пластичности образцов с надрезом при повышенных температурах. Впервые применена в 1950 году для изготовления дисков турбины, впоследствии корпусов турбины, силовых деталей форсажной камеры, лопаток и дисков газовых турбин и компрессоров. При изготовлении дисков турбины заменена в середине 1960-х годов никельжелезным сплавом «Инкалой 901» (IN901). Выпуск различных полуфабрикатов стали А286 в США осуществляли сразу пять металлургических фирм: Allegheny Ludlum, Carpenter Technology, Republic Steel/ Special Metalls Division, Superior Tube, Universal Cyclopes, что свидетельствует о масштабах её применения в авиа-ракетной промышленности США.

Сплав Cromadur выпускался в США под обозначением AF-71. В частности Allegheny Ludlum AF-71 для деталей газотурбинных двигателей, ракет, элементов планера самолетов[10].

См. также

Примечания

  1. Bandel G., Gebhard K. Warmfeste Stähle für den Gasturbinen. Essen, 1943
  2. Franz Bollenrath The Further Development of Heat-Resistant Materials for Aircraft Engines. Nasa Technical Reports Server (Ntrs) - July 2013
  3. High-Temperature Alloys. Metallurgical Problems of Gas Turbine Components. FLIGHT, October 30th, 1947, p.500
  4. Griffiths W.T. Aircraft Production, 1947, v. 9, N 110, pp. 444—447
  5. Fleischmann M. Research Institute for Materials of the DVL. CIOS Report XXVII-28, Item 21
  6. Decker, R. F. Evolution of Wrought Age-Hardenable Superalloys, The Journal of the Minerals, Metals and Materials Society, v. 58, № 9, 2006
  7. Schlaifer R. Development of Aircraft Engines. Boston, 1950
  8. 1 2 Meher-Homji, Cyrus B. (September 1997). "Anselm Franz and the Jumo 004". Mechanical Engineering. ASME. (недоступная ссылка)
  9. Mohling G. et.al. Superalloys for High Temperature Service in Gas Turbins and Jet Engines. — Metal Progress, 1946, v. 50, N 1, pp. 97-122
  10. Woldman's Engineering Alloys. Materials data series. ASM International, 2000, Alloy Data p. 63 ISBN 9780871706911

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии